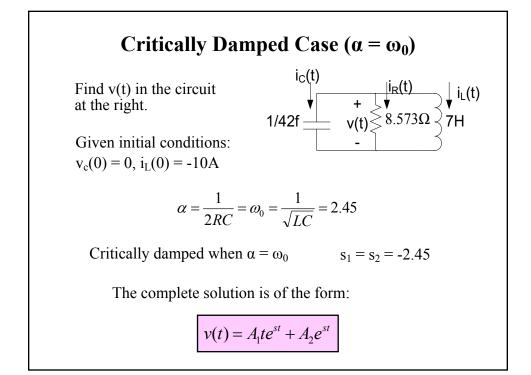
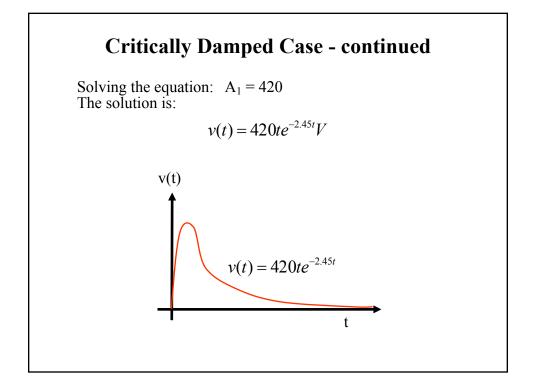
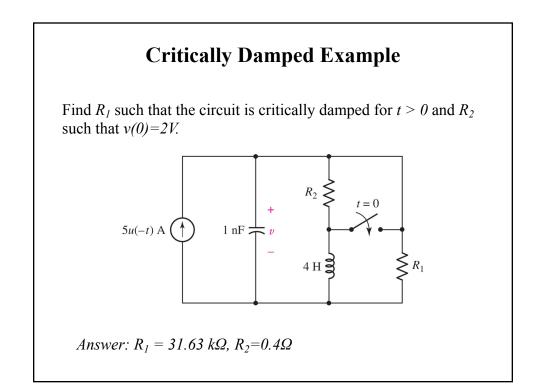


Characteristic equation	$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$
Neper, resonant, and damped frequencies	$\alpha = \frac{1}{2RC}$ $\omega_0 = \sqrt{\frac{1}{LC}}$ $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$
Roots of the characteristic equation	$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, \ s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$
$\alpha^2 > \omega_0^2$: overdamped	$\begin{aligned} v(t) &= A_1 e^{s_1 t} + A_2 e^{s_2 t}, t \ge 0\\ v(0^+) &= A_1 + A_2 = V_0\\ \frac{dv(0^+)}{dt} &= s_1 A_1 + s_2 A_2 = \frac{1}{C} \left(\frac{-V_0}{R} - I_0 \right) \end{aligned}$
$\alpha^2 < \omega_0^2$: underdamped	$\begin{aligned} v(t) &= B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t, t \ge 0\\ v(0^+) &= B_1 = V_0\\ \frac{dv(0^+)}{dt} &= -\alpha B_1 + \omega_d B_2 = \frac{1}{C} \left(\frac{-V_0}{R} - I_0\right) \end{aligned}$
$\alpha^2 = \omega_0^2$: critically damped	$v(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}, t \ge 0$ $v(0^+) = D_2 = V_0$ $\frac{dv(0^+)}{dt} = D_1 - \alpha D_2 = \frac{1}{C} \left(\frac{-V_0}{R} - I_0\right)$



Critically Damped Case - continued Use initial conditions to find A₁ and A₂ From v_c(0) = 0 at t = 0: $v(0) = 0 = A_1(0)e^0 + A_2e^0 = A_2$ Therefore A₂ = 0 and the solution is reduced to $v(t) = A_1te^{-2.45t}$ Find A₁ from KCL at t = 0: $i_R + i_L + i_C = 0$ $\frac{v(0)}{R} + (-10) + C \frac{dv(t)}{dt} \Big|_{t=0} = 0$ $\frac{0}{R} + (-10) + \frac{1}{42} (A_1t(-2.45)e^{-2.45t} + A_1e^{-2.45t}) \Big|_{t=0} = 0$ $-10 + \frac{1}{42} (A_1) = 0$





Underdamped Case (
$$\alpha < \omega_0$$
)
 $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$
For the underdamped case, the term inside the bracket will be
negative and s will be a complex number.
Define $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$
Then $s_{1,2} = -\alpha \pm j\omega_d$
 $v(t) = A_1 e^{(-\alpha + j\omega_d)t} + A_2 e^{(-\alpha - j\omega_d)t}$
 $v(t) = e^{-\alpha t} (A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t})$

